Espectrofotometria - Leis, Tipos, Usos e Aplicações

. Início do Blog . Espectrofotometria - Leis, Tipos, Usos e Aplicações
25

Abr 2018

Método de análises óptico utilizado nas investigações biológicas e físico-químicas. Baseado na medida quantitativa da absorção da luz pelas soluções, onde a concentração na solução da substância absorvente é proporcional à quantidade de luz absorvida

A espectrofotometria é o método de análises óptico mais utilizado nas investigações biológicas e físico-químicas.

Baseia-se na medida quantitativa da absorção da luz pelas soluções, onde a concentração na solução da substância absorvente é proporcional à quantidade de luz absorvida. Estas medidas são efetuadas por equipamentos denominados espectrofotômetros.



Neste artigo, vamos falar de:

  • Fundamento da espectrofotometria
  • Leis
  • Tipos
  • Usos e Aplicações


Fundamento da espectrofotometria

A luz de uma maneira geral é mais bem descrita como sendo uma radiação eletromagnética em virtude de sua natureza dualística. Ou seja, ela existe e tem um comportamento de campos elétricos e magnéticos oscilantes.

A técnica espectroscópica é baseada na no aumento de energia em função do aumento da frequência da radiação incidida. Quando uma espécie química absorve energia na forma de fótons, seus elétrons ficam excitados e ocorre uma transição de um orbital de mais baixa energia para outro de maior energia.


Espectrofotômetro



Os principais componentes de um espectrofotômetro:

  1. Fonte de Luz: é composta por uma lâmpada de deutério e uma lâmpada de tungstênio. A lâmpada de deutério emite radiação UV e a de tungstênio emite luz visível.
     
  2. Cubeta / Recipiente: é um pequeno recipiente utilizado para conter o material a ser analisado. As cubetas podem ser quadradas, retangulares ou redondas e são constituídas de vidro, sílica (quartzo) ou plásticas.
     
  3. Amostras: só podem ser analisados por espectrofotometria de absorção compostos que absorvem luz. Em caso de soluções fortemente coloridas como permanganato, dicromatos, cromatos e outros compostos com cores altamente acentuadas deverão ser feitas, no mínimo, 5 diluições.
     
  4. Monocromador: alguns equipamentos ainda possuem um prisma como monocromador, porém, os mais modernos possuem dispositivos eletrônicos que transformam a luz incidida em vários comprimentos de onda em um único comprimento de onda, ou seja, luz monocromática.
     
  5. Detector: é um dispositivo que detecta a fração de luz que passou pela amostra e transfere para o visor e para o computador acoplado ao aparelho.
     



Leis

Transmitância

A transmitância consiste na medida da luz transmitida. Quando um raio de luz monocromática de intensidade inicial definida incide sobre uma solução colorida, a intensidade da luz emergente é menor que a luz incidente, ou seja, parte da luz foi absorvida.



Lei de Bouguer-Lambert

Bouguer e, em seguida, Lambert investigaram a relação entre a diminuição da intensidade de luz e a espessura do meio absorvente. Ao incidir-se um raio de luz sobre diversas camadas opticamente homogêneas e de espessuras conhecidas, observa-se uma proporção direta entre a espessura das camadas e o logaritmo da transmissão, ou a transmissão da luz decresce logaritmicamente com o aumento linear da espessura da camada. Tem-se, então, uma relação direta entre a absorvância e a espessura da camada.

Quanto maior a espessura da camada, maior a absorvância, e menor a transmitância.



Lei de Beer-Lambert

A lei de Beer-Lambert, ou simplesmente Lei de Beer, afirma que a concentração de uma substância é diretamente proporcional à quantidade de luz absorvida ou inversamente proporcional ao logaritmo da luz transmitida.

Na prática laboratorial, a aplicação quantitativa da Lei de Beer é realizada pelo emprego de espectrofotômetros, onde são lidas as absorvâncias de uma solução teste e de uma solução padrão de concentração conhecida (após submetida a reações apropriadas).



Medida da Transmitância e da Absorvância

A transmitância e a absorvância das soluções coloridas são medidas por meio de instrumentos denominados fotômetros. Estes instrumentos empregam como fonte luminosa uma lâmpada incandescente produtora de luz branca. Potencialmente, pode-se empregar qualquer comprimento de onda da região visível. Para a resolução da luz em determinado comprimento de onda desejado, são utilizados monocromadores que consistem em filtros interferentes ou de absorção (fotômetros de filtro), prismas ou retículos de difração (espectrofotômetros).

A luz atravessa uma solução colorida presente em uma cubeta; parte é absorvida (esta absorção depende da intensidade de cor da solução). A luz transmitida (detectada por uma fotocélula) tem intensidade menor que a luz incidente. A fotocélula converte a energia elétrica, emitindo um sinal que pode ser lido na escala de um galvanômetro, em percentagem de transmitância ou em absorvância.



Absorvância

A absorvância, por sua vez, consiste na medida da luz absorvida, onde mede-se a intensidade de luz absorvida por uma solução corada pela redução da medida da intensidade da luz transmitida.

A absorvância não é uma quantidade medida diretamente, mas é obtida por meio do cálculo matemático a partir dos valores de transmitância.




Tipos

Espectrofotometria no Infra-vermelho

Os compostos orgânicos também absorvem radiações na região do infravermelho (IV) do espectro. A radiação infravermelha não tem energia suficiente para excitar os elétrons e provocar transições eletrônicas, mas ela faz com que os átomos ou grupos de átomos vibrem com maior rapidez e com maior amplitude em torno das ligações covalentes que os unem.

A radiação infravermelha é outra espécie de radiação eletromagnética cujo espectro começa num dos limites do espectro da luz (o vermelho) e se estende até à zona das ondas hertzianas (radar, televisão, rádio). É caracterizada por um comprimento de onda compreendido entre cerca de 800 e 105 nm. Nas moléculas, os átomos e os grupos atômicos estão em contínuo movimento, uns em relação aos outros (vibrações moleculares).

A espectrofotometria infravermelho próximo oferece um método rápido de análise química que fornece, em segundos, resultados de múltiplas propriedades em amostras não preparadas.



Espectrofotometria astronómica

Os astrônomos utilizam redes de difração para estudar o espectro de energia da radiação eletromagnética dos astros coletada nos telescópios. A rede de difração é o artefato que substitui o antigo prisma óptico na pesquisa científica.



Espectrofotometria de absorção atómica

É o método de análise usado para determinar quantitativamente a presença de metais. O método consiste em determinar a presença e quantidade de um determinado metal em uma solução qualquer, usando como princípio a absorção de radiação ultravioleta por parte dos elétrons que, ao sofrerem um salto quântico depois de devidamente excitados por uma chama de gás acetileno a 3000 graus Celsius, esses devolvem a energia recebida para o meio, voltando assim para a sua camada orbital de origem.




Usos e aplicações

Dentre as diversas aplicações o espectrofotômetro é usado para medir determinados ingredientes em uma droga, medir o crescimento bacteriano, ou diagnosticar um paciente com base na quantidade de ácido úrico presente em sua urina. Sendo que as análises podem ser quantitativas (identificação da concentração da substância) e qualitativas (identificação de uma substância desconhecida), já que cada substância irá refletir e absorver a luz de forma diferente.


Espectrofotômetro: usos e aplicações

A espectroscopia no infravermelho é largamente usada tanto na indústria quanto na pesquisa científica pois ela é uma técnica rápida e confiável para medidas, controle de qualidade e análises dinâmicas.

Os instrumentos agora são pequenos, e podem ser transportados, mesmo para medidas de campo. Com a crescente tecnologia em filtragem computacional e manipulação de resultados, agora as amostras em solução podem ser medidas com precisão (a água produz uma banda larga de absorbância na faixa de interesse, o que daria um espectro ilegível sem esse tratamento computacional).

Algumas máquinas até mesmo dirão automaticamente que substância está sendo analisada a partir de milhares de espectros de referência armazenados na memória. Medindo-se a uma freqüência específica ao longo do tempo, mudanças no caráter ou na quantidade de uma ligação em particular podem ser medidas, isso é especialmente útil na medida do grau de polimerização na manufatura de polímeros.

As máquinas modernas podem tirar medidas na faixa de interesse freqüentemente, como 32 vezes por segundo. Isso pode ser feito enquanto se fazem medidas simultâneas com outras técnicas. Isso faz com que as observações de reações químicas sejam processadas mais rapidamente, de forma mais precisa e mais exata.



Análise espectrofotométrica

  • Passo 1: a amostra deve ser preparada com a quebra da amostra por métodos mecânicos, químicos ou físicos.
     
  • Passo 2: a amostra é solubilizada no solvente escolhido em um balão volumétrico limpo e seco.
     
  • IMPORTANTE: o solvente na maioria das vezes é água, porém, quando tratar-se de amostras apolares que precisam ser diluídas em solvente orgânico nunca utilize alcenos, alcinos, cetonas ou qualquer outro que tenha ligações C=C ou C=O ou triplas.
     
  • Passo 3: em uma cubeta é colocado o solvente puro e lido no comprimento de onda o mesmo que será lida a amostra, esse procedimento é chamado leitura em branco, e tem como finalidade minimizar os erros causados, pela absorção luz ocasionados pelo vidro e pela água.
     
  • Passo 4: a amostra é filtrada em uma membrana de 0,2 μm, por que a solução deve estar totalmente límpida a fim de diminuir ao máximo o erro causado por partículas em suspensão, a cubeta contendo o branco e retirado do equipamento e sua absorção anotada. Após esse processo a solução de interesse é lida, e dessa absorbância é subtraído a leitura do branco.
     



Cuidados em espectrofotometria

Leia estas dicas sobre erros de manuseio e diversos cuidados em espectrofotometria.

  • É imprescindível que o equipamento seja calibrado e manuseado de acordo com as instruções do fabricante, por ele já traz a margem de erro que o aparelho tem.
     
  • Evitar erros de leitura certificar-se de que o equipamento esteja fechado. Antes da leitura a luz do ambiente pode interferir no resultado.
     
  • Manter sempre limpo e fechado a fim de evitar o acumulo de partículas de poeira que interferem na análise. Em hipótese alguma toque a cubeta com as mãos sem luvas, a nossa mão contém gorduras e interferem na leitura.
     
  • Só podem ser analisados por espectrofotometria de absorção compostos que absorvem luz.
     
  • Em caso de soluções fortemente coloridas como permangantos, complexos altamente coloridos, dicromatos, cromatos e outros compostos com cores altamente acentuadas deverão ser feitas no mínimo 5 diluições de concentração conhecida e lidas no espectrofotômetro e uma curva analítica deverá ser traçada afim de determinar o coeficiente de extinção molar.
     
  • Soluções muito concentradas tendem provocar erros de leitura por que existem muitas moléculas próximas umas das outras.
     


Descubra mais sobre a Espectrofotômetro Raman:

A MONDRAGON revende no Brasil o Espectrômetro Raman da BWTEK. Solicite informações (11) 9-4570-6177 - (11) 9-4392-2742

Peça um orçamento, estamos ao seu dispor.

Comente no Facebook

Envie seu comentário para a Mondragon